Понятие и технические характеристики клиновых ремней, виды и применение
Ремни приводные клиновые
Энергия в механизмах и машинах может транслироваться при помощи механических, пневматических, гидравлических и некоторых других устройств.
В технике механические передачи – это такие механизмы, посредством которых осуществляется кинематическая передача энергии от машины, называемой двигателем, к машине, называемой орудием, таким образом, что в ходе этого процесса происходит преобразование моментов, скоростей, а в целом ряде случаев видов движения (к примеру, вращательного в возвратно-поступательное) и даже его законов.
В механике с помощью передачи производится соединение вала, который имеет источник энергии (двигателя) с валами, которыми оснащены ее потребители. В качестве последних чаще всего выступают рабочие органы различных машин (например, ведущие колеса автомобильного или железнодорожного транспорта).
![]() |
Wp – расчетная ширина ремня, мм
(ширина поперечного сечения ремня,
находящегося под натяжением, на уровне нейтральной линии);
W – ширина большего основания ремня, (мм);
α – угол клина ремня, равный (40±1)°
Ремень клиновой А – 1800, где:
А – сечение ремня;
1800 – номинальная расчетная длина ремня (мм).


















История механических передач уходит своими корнями в глубь веков. Они стали известны людям еще тогда, когда техника только зарождалась, и сейчас, пройдя долгий и тернистый путь развития, распространены чрезвычайно широко. Для того чтобы грамотно эксплуатировать механические передачи, необходимо знать те методы, на основе которых они рассчитываются и проектируются.
Как показывает практика, самым распространенным из передач является такой способ трансляции механической энергии, при котором она передается посредством силы трения, возникающей между соприкасающимися поверхностями шкива и ремня. Подобная механическая передача называется ременной.
Она состоит из основных частей, как шкивы (ведущий и ведомый), которые располагаются на некотором удалении друг от друга, а также приводного ремня, который их огибает причем достаточно плотно прилегая к поверхностям обоих.
Ременные передачи имеют целый ряд несомненных достоинств, главными из которых являются следующие:
• Невысокая стоимость и простота конструкции;
• Безударность работы и плавность хода;
• Простота в эксплуатации и обслуживании;
• Возможность трансляции крутящего момента на значительные расстояния.
В то же самое время ременные передачи не лишены и некоторых недостатков. Они не могут использоваться в быстроходных механизмах, поскольку при больших оборотах ведущего шкива происходит проскальзывание приводного ремня. К тому же, ременные передачи довольно сильно нагружают подшипники опор и сами валы. Еще одним из весьма существенным минусом является возможность обрыва ремня или его соскакивания, и чтобы этого не случалось, за такими передачами необходим периодический контроль.
Клиноременная передача относится к категории тех, которые характеризуются гибкой связью между ведущим и ведомым валами. Они чаще всего применяются общем машиностроении и являются для него одними из наиболее типичных методов трансляции механической энергии.
Например, клиноременные передачи используются практически во всех металло- и деревообрабатывающих станках, в приводах водяных насосов, генераторов, вентиляторов, компрессоров, строительной техники и т.п.
Те клиновидные ремни, которые имеют стандартное сечение, способны эксплуатироваться при температурах от -30 °С до +60 °С.
Стандартное сечение клиновидного приводного ремня означает, что его профиль имеет форму трапеции с углом 40°. По сравнению с плоским такой ремень имеет большее тяговое усилие, но существенно более низкий КПД.
Абсолютно любой приводной ремень – это тяговый орган, и поэтому он должен обладать достаточными показателями прочности, износостойкости, долговечности. Кроме того, важно, чтобы он был недорог и имел хорошее сцепление с поверхностью шкива. Что касается клиновидных ремней, то их наиболее рационально применять тогда, когда передаточные отношения довольно велики.
Материалы и конструкции ремней.
Приводной ремень должен обладать определенной тяговой способностью (способностью передавать заданную нагрузку без буксования) и достаточной долговечностью. Тяговая способность ремня обеспечивается надежным сцеплением его со шкивами, что обусловливается высоким коэффициентом трения между ними. Долговечность ремня зависит от возникающих в нем напряжений изгиба и частоты циклов нагружений — числа пробегов ремня в единицу времени. Пользуясь приведенными ниже рекомендациями, можно обеспечить требуемую долговечность ремня.
Плоский ремень.
По материалу и конструкции различают несколько типов ремней. К стандартным плоским ремням относятся:
- резинотканевые (ГОСТ 23831 — 79),
- кожаные (ГОСТ 18679 —73),
- хлопчатобумажные цельнотканевые (ГОСТ 6982-75)
- шерстяные (ОСГ/НКТМ 3167).
Резинотканевые ремни.
Резинотканевые ремни — самые распространенные. Они бывают двух видов: общего назначения и морозостойкие. Ремни общего назначения предназначены для работы в интервале температур от —25 до +60°С, а морозостойкие — в интервале от —45 до + 60 °С. Резинотканевые ремни состоят из тканевого каркаса нарезной конструкции и резиновых прослоек между тканевыми прокладками. Каркас ремней изготовляют из хлопчатобумажных тканей или тканей из комбинированных нитей (полиэфирных и хлопчатобумажных волокон), или тканей из синтетических нитей. Некоторые ремни изготовляются без резиновых прослоек.
Ремни общего назначения и морозостойкие изготовляют как с наружными резиновыми прокладками (одной или двумя), так и без резиновых обкладок. Ткань прокладок обеспечивает ремням требуемую прочность и долговечность, а резина служит связующим веществом ремня, предохраняет ткань от повреждений, повышает коэффициент трения между ремнем и шкивами. Ремни изготовляют конечными. Ширина ремней 20. 1200 мм, число прокладок 3. 6 толщиной 1,25.-1,5 мм каждая. Соединение конечных ремней выполняют склеиванием, сшивкой или металлическим скреплением.
Кожаные ремни.
Кожаные ремни делают из отдельных полос кожи путем их склеивания специальным клеем или сшивки сыромятными ремешками (жильными струнами диаметром 1,5. 3.5 мм). Стандартные кожаные ремни изготовляют конечными шириной 20. 300 мм и толщиной 3. 10 мм. Предназначены для передачи малых и средних мощностей.
Обладают хорошей тяговой способностью, прочны и с точки зрения надежности и долговечности предпочтительнее других, в особенности при работе в условиях переменных и ударных нагрузок. Они имеют износоустойчивые кромки и могут работать при скорости до 45 м/с. Однако из-за высокой стоимости их применяют редко. Кожаные ремни совершенно не пригодны для работы в сырых и насыщенных парами кислот и щелочей помещениях, так как они быстро портятся и выходят из строя.
Хлопчатобумажные цельнотканые ремни.
Хлопчатобумажные цельнотканые ремни изготовляют (ткут) из хлопчатобумажной пряжи в несколько переплетающихся слоев обычно конечными шириной 30. 250 мм, толщиной 4,5. 8,5 мм (соответственно числу слоев 4. 8). Для предохранения от атмосферных влияний, увеличения прочности и долговечности, а также уменьшения усадки в свободном состоянии их пропитывают специальным составом из озокерита (горного воска) и битума. Хлопчатобумажные ремни самые дешевые, но по нагрузочной способности и долговечности уступают прорезиненным и кожаным ремням, и поэтому их применяют преимущественно для передачи небольших мощностей при скорости до 25 м/с. Для работы в сырых помещениях или при температуре свыше 50 °С, а также при опасности воздействия паров кислот хлопчатобумажные ремни не применяют.
Шерстяные ремни.
Шерстяные ремни выполняют (ткут) в несколько слоев из шерстяных и хлопчатобумажных нитей, пропитывают составом из олифы, порошкового мела и железного сурика. Они менее чувствительны к воздействию повышенной температуры, влажности, паров кислот и щелочей, что и определяет области применения этих ремней. Шерстяные ремни делают конечными шириной 50. 500 мм и толщиной 6. 11 мм (соответственно числу слоев 3. 5). Они обладают значительной упругостью и поэтому хорошо работают при неравномерной и ударной нагрузках. Максимальная допускаемая скорость 30 м/с.
Кроме стандартных типов плоских ремней в отдельных специальных установках применяют прошивные прорезиненные, тканые полульняные, шелковые, полиамидные и другие ремни. При больших скоростях выпускают бесконечные тканые полульняные ремни шириной 15. 25 мм, толщиной 1,75 мм и длиной 1000. 1800 мм. Для быстроходных передач используют шелковые ремни. Полиамидные ремни имеют большие перспективы применения в отечественном машиностроении. Их либо ткут из полиамидных нитей, либо получают в виде пленочной многослойной ленты. Применяют также полиамидные ремни, армированные тонкими металлическими тросиками. Полиамидные ремни в несколько раз прочнее и долговечнее обыкновенных. Они пригодны для высокоскоростных передач при скорости ремня до 100 м/с и выше, передач с малым межосевым расстоянием. Могут передавать мощности от весьма малых до нескольких тысяч киловатт. Для повышения коэффициента трения между ремнем и шкивами полиамидные ремни покрывают синтетической резиной, полихлорвинилом или фрикционными обкладками из хромовой кожи или хлопчатобумажной ткани.
Зубчатые ремни.
Зубчатые ремни (рис. 1, а) сочетают преимущества плоских ремней и зубчатых зацеплений. На рабочей поверхности ремней делают выступы (зубья), которые входят в зацепление с выступами (зубьями) на шкивах. Зубчатые ремни изготовляют из маслостойких искусственных материалов, из резины на основе хлоропреновых каучуков, из вулкалана, которые армируют стальными проволочными тросами (рис. 1, б), воспринимающими нагрузку на ремень. Для особо легких условий работы (в контрольно – измерительной аппаратуре) вместо стальных тросов применяют полиамидный корд. Такие ремни могут работать в масле. Для повышения износостойкости зубчатые ремни иногда покрывают нейлоновой тканью. Зубчатые ремни устанавливают без предварительного натяжения; они работают без скольжения и бесшумно. По сравнению с обыкновенной ременной передачей значительно компактнее и имеют более высокий к. п. д. Зубчатые ремни выпускают шириной 5. 380 мм, для передачи мощности до 200 кВт и выше при скорости до 80 м/с.
Клиновые ремни.
Клиновые ремни для приводов общего назначения изготовляют двух конструкций: кордтканевые и кордшнуровые. Кордтканевые клиновые ремни (рис. 2, а) состоят из нескольких слоев прорезиненной текстильной кордткани 2, передающей основную нагрузку и расположенной примерно симметрично относительно нейтрального слоя ремня; резинового или резинотканевого слоя растяжения 1, находящегося над кордом; резинового или реже резинотканевого слоя сжатия 3, расположенного под кордом; нескольких слоев оберточной прорезиненной ткани 4. В кордшнуровых клиновых ремнях (рис. 2, б) вместо слоев кордткани предусматривают один слой кордшнура 2 толщиной 1,6. 1,7 мм, слой растяжения 1 из резины средней твердости и слой сжатия 3 из более твердой резины. Эти ремни, как более гибкие и долговечные, применяют при тяжелых условиях работы.
Клиновые ремни изготовляют трех типов: нормального сечения, узкие и широкие (вариаторные). Ремни нормального сечения (ГОСТ 1284.1 — 80; 2—80; 3—80) основные в общем машиностроении. В соответствии с ГОСТом эти ремни изготовляют семи различных по размерам сечений: О, А, Б, В, Г, Д и Е. Эти ремни выполняют бесконечными различных стандартных длин. Угол профиля φ=40°. Допускаемая максимальная скорость для профилей О, А9 Б и В до 25 м/с, для профилей Г, Д и Е до 30 м/с.
Клиновые ремни для привода сельскохозяйственных машин стандартизованы ГОСТ 10286 — 75. Для автотракторных двигателей изготовляют специальные кордшнуровые вентиляторные ремни повышенной гибкости (ГОСТ 5813 — 76). Для клиноременных передач со шкивами малых диаметров применяют ремни с гофрами (рис. 2, в). Выпускают клиновые ремни с кордом из полиамидных волокон, которые применяют при тяжелых условиях работы (высокие скорости и вибрации, малые диаметры шкивов и т. п.). Для обеспечения большей несущей способно сти и долговечности применяют клиновые ремни с кордом из стальных тросов. Эти ремня могут работать при скорости до 60 м/с.
Поликлиновые ремни.
Поликлиновые ремни по конструкции подобны клиновым. В тонкой плоской части их (см. рис. 3) помещаются высокопрочный шнуровой корд из вискозы, стекловолокна или лавсана и несколько слоев диагонально расположенной ткани, придающей ремню большую поперечную жесткость. Поликлиновые передачи — самые компактные из всех ременных передач и могут работать со скоростью v≤40 м/с.
Круглые ремни.
Из круглых ремней наиболее распространены хлопчатобумажные и капроновые. Изредка пользуются прорезиненными и кожаными круглыми ремнями.
Общие сведенья о приводных ремнях
Привод – это устройство приводящее любой механизм в действие.
Привод (или передача) бывает:
— механический;
— ременной;
— цепной;
— гидравлический;
— пневматический;
— электрический и т.д.
В данной презентации рассмотрим ременную передачу.
•Industrial Machinery- промышленное оборудование
Первые упоминания о механической ременной передаче появились в Китае, в эпоху династии Хан (200 лет до нашей эры). Первое практическое применение ременная передача нашла в Индии на текстильном производстве.
Именно ременная передача послужила основой для изобретения цепной передачи.
Первый клиновой ремень был изобретен в 1917 году Джоном Гейтсом. Промышленное производство приводных клиновых ремней началось в начале 20-х годов прошлого века. За эти годы много изменилось в используемых материалах для производства, изменилась и сама форма приводных ремней. Изначально приводные клиновые ремни пришли на замену плоским и круглым ремням, а также веревкам, применяемым в приводах автомобильных двигателей в те времена, и конечно же были слишком ненадежны.
В 1930 году Вальтер Гейтс из Ализ Шалмерз (Allis Chalmers) получил патент на разработку, проектирование и применение ремней на мультиприводах промышленного назначения, что послужило началом массового внедрения приводных ремней для промышленного оборудования. Впервые использовал несколько ремней на промышленных приводах.
Вначале ремни производились с применением хлопковой нити и из смеси на основе натуральной резины. Такая технология производства ремней была вплоть до окончания второй мировой войны. Стальную проволоку впервые использовали в качестве корда на ремнях во время второй мировой войны. Позже, синтетические корды на основе вискозы заменили хлопок, из-за своей высокой эластичности и прочности. Помимо этого во время второй мировой войны была создана синтетическая резина типа SBR. Из-за дефицита хлопка и вискозы проводились эксперименты с нейлоновыми тканями, хотя нейлон так и не нашел широкого применения в производстве из-за рабочих параметров.
Сегодня, при производстве приводных ремней, чаще всего применяются полиэфирные, стекловолоконные и кевларовые корды. Разработаны эластомеры, такие как неопрен, который широко используется по причине своей превосходной устойчивости к воздействию масел, высокой температуры и к озону. Со временем созданы новые профили приводных ремней для передачи больших мощностей с малыми затратами. Узкие приводные ремни впервые применены в 1950 году в автомобильных двигателях.
В 1959 году был впервые представлен более эффективный и занимающий меньше места привод на основе узких ремней (SPZ/3V, SPA, SPB/5V, SPC, 8V). Позже разработаны ремни с зубчатыми и поликлиновыми профилями.
1.Плоские
2.Клиновые 1.6:1
3.Клиновые 1.2:1
4.Клиновые узкого сечения
5.Поликлиновые
6.Многоручьевые
7.Вариаторные
8.Зубчатые
9.Синхронные
10.Шестигранные
11.Звеньевые клиновые
12.Круглого сечения
13.Ассиметричные
14.Специальные
•Клиновидная форма ремня позволяет передавать энергию за счет увеличения силы трения давлением на стенки шкива
•
•Передача энергии в синхронных ремнях происходит благодаря сцеплению зубьев ремня и шестеренок
- 9) – Типы клиновых ремней
- 13) – Характеристики резины в клиновых ремнях
Клиновые ремни
Дата публикации 22 Oct 2013
Клиновые ремни имеют сечение в виде равнобедренной трапеции. Рабочими поверхностями ремня являются боковые поверхности. Ремни работают в канавках двух или более шкивов, профиль которых имеет также форму трапеции. Передача вращения от одного шкива к другому осуществляется благодаря силе трения между боковыми поверхностями ремня, находящегося под натяжением, и боковыми сторонами канавок! шкивов.
Угол клина сечения ремня обеспечивает максимальное заклинивание ремня в канавку шкива и достаточно свободный выход ремня из канавки. Он обычно составляет 38-40° (или 22-34°, если с помощью ремня регулируется скорость передачи). Благодаря заклиниванию ремня в канавке шкива при одинаковых натяжениях клиновые ремни способны передавать мощность в 2-3 раза большую, чем плоские ремни; работать при малых межцентровых расстояниях при больших передаточных числах; в определенных передачах бесступенчато изменять скорость тредами.
Наряду с этим клиновым ремням присущи и недостатки: скорость ремней за редким исключением не превышает 35 м/с; благодаря своей массе в ремнях имеют место значительные деформации сечения, приводящие к повышенному теплообразованию; возможность работы на шкивах малых диаметров ограничена высотой ремней; при работе i рун нового привода имеет место неравномерность нагружения ремней ИЭ-за отклонений по длине.
В зависимости от назначения и условий работы клиновые ремни подразделяются на вентиляторные, приводные и вариаторные.
Вентиляторные ремни применяют в передачах автомобилей, тракторов и двигателях комбайнов для передачи вращения от коленчатого вала к вентилятору, генератору, гидронасосу, гидроусилителю руля, компрессору (рис. 1.1).
Для передач с вентиляторными ремнями характерны высокие скорости и малые диаметры шкивов. На легковых автомобилях, тракторах малой мощности применяется в основном один ремень, реже групповой привод из двух ремней, которыми приводятся во вращение все узлы. На грузовых автомобилях, тракторах с двигателем большой мощности и автобусах, где имеют место повышенные нагрузки, используют несколько ремней, в том числе и групповые приводы по 2-4 ремня.
Приводные ремни работают в передачах промышленного оборудования и сельскохозяйственных машинах. Ремни эксплуатируются в самых различных условиях и могут передавать мощность 0,01 до 300 кВт и более. В передаче может быть один ремень, групповой привод (рис. 1.2) или многоручьевой ремень.
Вариаторные ремни предназначены для бесступенчатого регулирования скорости при передаче вращения от двигателя к рабочим органам машины. Они применяются в приводах сельскохозяйственных машин и промышленного оборудования (рис. 1.3).
Основными геометрическими характеристиками клиновых ремней являются (рис. 1.4): расчетная ширина сечения / ; ширина по большему основанию сечения W; высота ремня V, угол клина ремня А; расчетная длина ремня на уровне расчетной ширины Lp.
Согласно международному стандарту МС ИСО 1081 «Терминология для трапециевидных ремней и канавок шкивов» принято определение расчетной ширины ремня, основанное на понятиях расчетной линии и расчетной поверхности ремня. Расчетная линия -это линия по дуге окружности ремня, длина которой не меняется при изгибе ремня, расчетная поверхность-геометрическое место расчетных линий и расчетная ширина – ширина ремня на уровне его расчетной (нейтральной) поверхности.
Расчетная ширина ремня принята в качестве основной для стандартизации ремней, так как она. определяет и размеры шкивов, и скорость ремня. Расчетная линия располагается на расстоянии приблизительно 2/3 от нижнего основания ремня.
В отечественных и зарубежных стандартах, технических условиях, изданных в разное время, обозначение основных размеров не всегда совпадает с указанным. В процессе пересмотра документации на ремни старые буквенные обозначения заменяются на принятые в международном стандарте. В настоящем разделе при обозначении размеров сечения ремней авторы придерживаются обозначений согласно МС ИСО 1081.
В зависимости от величины отношения высоты ремня к расчетной ширине сечения T/lр различают ремни узкого сечения, где эта величина приблизительно равна 0,9; нормального сечения (классические), где она составляет 0,7; вариаторные широкие-0,3 и полуширокие-0,4 и 0,5. Ремни узкого сечения разработаны на базе ремней нормального сечения. Высота узких ремней больше высоты ремней нормального сечения при их одинаковой ширине. В соответствии с этим ремни узких сечений имеют большую поверхность контакта ремня со шкивом, и по сравнению с ремнями нормальных сечений они передают в 1,5-2 раза большую мощность; способны работать при скоростях до 40 м/с (вместо 30). Применение узких ремней позволяет сократить габариты, массу и стоимость клиноременной передачи.
Размеры клиновых ремней
Размеры ремней характеризуются сечением и длиной.
Сечение ремня. Каждое сечение предназначено для определенных параметров эксплуатации (передаваемой мощности, диаметров шкивов, диапазона регулирования и т. д.).
Клиновые ремни нормальных сечений, производство которых освоено давно, имеют наиболее установившиеся размеры сечений, совпадающие у ремней, выпускаемых различными изготовителями большинства стран. Небольшие колебания в размерах обусловлены применением разных систем мер. Так, например, в странах с метрической системой мер выпускают ремни сечения 13X10 (bo/h), а в странах с дюймовой системой мер — 12,7X9,8 и т. д. Поскольку отклонения не превышают допусков на размеры сечения, взаимозаменяемость ремней сохраняется.
Для обеспечения взаимозаменяемости ремней различных изготовителей первым условием является точное соответствие расчетной ширины и расположение ее в канавке шкива на одном и том же уровне. Допускаются некоторые различия по ширине верхнего основания, а также по высоте сечения.
Международная организация по стандартизации (Технический комитет ИСО ТК-41) установила основные размеры сечений ремней и канавок шкивов, обеспечивающие взаимозаменяемость ремней различных изготовителей. За основу для стандартизации принята расчетная ширина ремня и канавки шкива, рассматриваемая как одно целое. Расчетная ширина и положение ее в канавке шкива определяют профиль канавки, расчетный диаметр и скорость ремня. Поэтому в качестве основных размеров сечения ремней приняты:
bp — расчетная ширина, h — толщина и фo — угол клина. Ширина ремня по верхнему основанию (bo) является вспомогательным размером.
Клиновые ремни нормальных сечений включают ремни приводные и вентиляторные. Размеры сечении приводных клиновых ремней приведены в табл. 1.3.
Размеры сечений по ГОСТ 1284—68 и американскому стандарту очень близки. Причем размеры по ГОСТ полностью отвечают рекомендации. ИСО ТК-41.
Основные размеры сечения ремней bp и h соответствуют значениям нормальных линейных размеров (ГОСТ 6636—69). Это обеспечивает наиболее правильную градацию размеров, поскольку ряды этих чисел приняты за основу для выбора параметров и размеров продукции, выпускаемой всеми отраслями народного хозяйства.
Ниже приведены размеры вентиляторных клиновых ремней (в мм)*:
Следует отметить, что размеры вентиляторных ремней, выпускаемых в разных странах, близки, хотя рекомендаций ИСО ТК-41 по размерам этих ремней пока еще нет.
В размерах узких клиновых ремней разных изготовителей наблюдаются значительные расхождения, что создает трудности как в международной торговле, так и при попытках стандартизовать эти ремни в рамках ИСО.
В отечественной промышленности установлены следующие размеры (в мм) сечений узких клиновых ремней (угол клина 40°):
Расчетные ширина и толщина отечественных узких ремней соответствуют нормальным линейным размерам, что выгодно отличает их от размеров сечений узких ремней, принятых в ряде других стран (табл. 1.4).
Международной организацией по стандартизации (ИСО ТК-41) было предложено стандартизовать сечения узких ремней, приняв обязательным размером расчетную ширину ремня (равную расчетной ширине канавки шкива), аналогично тому, как это принято для ремней нормальных сечений. В настоящее время предложена расчетная ширина для трех сечений: 8,5; 11 и 14.
Еще большее расхождение в размерах сечений наблюдается для широких клиновых ремней (даже для ремней разных изготовителей в одной и той же стране), что объясняется широким их использованием без соответствующей нормализующей документации.
Благодаря наибольшей экономичности клиноременной вариаторной передачи (в сравнении с другими типами вариаторных передач) клиноременные ремни широко применялись для самых разнообразных условий эксплуатации, но при этом для каждой передачи проектировался свой ремень. Поэтому размеры сечения ремней различались часто на 1—2 мм; отношение bo/h также не выдерживалось постоянным.
Наиболее четко размеры вариаторных ремней представлены в отечественной нормали НМ-2—58 (вариатор- ные ремни, применяемые в промышленных установках) и в стандарте ASAE (вариаторные ремни для сельскохозяйственных машин).
Ниже приведены эти размеры.
Размеры сечений вариаторных ремней для промышленных установок (нормаль НМ-2—58) *:
Размеры сечений вариаторных ремней для сельскохозяйственных машин (стандарт ASAE, 1966 г.)
Расчетная ширина ремня и угол клина в стандарте ASAE не регламентируются; отношение ширины большего основания сечения к толщине ремня составляет
Различие в отношениях ширины к толщине для ремней промышленных и ремней для сельскохозяйственных машин обусловлено спецификой эксплуатации. Для вариаторов, применяемых в промышленных установках, наибольшее значение имеет широкий диапазон регулирования; для ремней, работающих на сельскохозяйственных машинах, не требуется большого диапазона регулирования, но требуется передача значительных мощностей. Чем больше отношение b/h, тем шире диапазон регулирования и тем меньше передаваемая мощность, отнесенная к единице площади сечения ремня. Поэтому для вариаторных ремней промышленных установок принимают отношение bо/h от 2,5 до 3,5 (в зависимости от особенностей привода), а для ремней сельхозмашин — 2,0.
Помимо ремней сечений, указанных выше, производят вариаторные ремни и других сечений. Многообразие и случайность выбора размеров в ряде случаев приводят к неправильному использованию ремней и преждевременному выходу их из строя. Технический комитет ИСО ТК-41 в настоящее время разрабатывает размерный ряд для вариаторных ремней. При этом за основу рекомендовано принять для вариаторов промышленных установок нормаль НМ-2—58, для вариаторов сельхозмашин — стандарт ASAE. Предполагается также разработать размерный ряд для «тонких» вариаторных ремней (имеющих отношение b/h более 4) и для «толстых» вариаторных ремней (с отношением bо/h менее 2). При отношении b/h свыше 4 ремни имеют очень малую поперечную жесткость, вследствие чего могут передать незначительную мощность, но обеспечивают широкий диапазон регулирования. «Толстые» вариаторные ремни практически приближаются по размерам сечения к приводным ремням нормальных сечений. Такие ремни применяют обычно в многоручьевых вариаторных приводах при передаче значительной мощности. Ввиду сложности конструкции (при которой теряется экономичность клиноременных вариаторов) такие вариаторы в отечественной промышленности не нашли применения.
Основная масса вариаторных ремней имеет угол клина 34°. Этот угол наиболее выгоден с точки зрения устранения возможности заклинивания ремня в канавке шкива и обеспечения достаточного диапазона регулирования. В отдельных случаях используют ремни, имеющие меньший угол (28°) и больший угол (до 40°). Выбор угла связан с особенностями работы передачи: при меньшем угле расширяется диапазон регулирования, а при большем— увеличивается надежность работы. Применение стандартного угла целесообразно с точки зрения унификации шкивов, а также производства ремней. Для ремней отечественного изготовления принят угол клина 34°.
Длина клиновых ремней. Этот размер колеблется в пределах от 400 до 20 000 мм. С целью унификации градацию длин производят в соответствии с нормальными линейными размерами. Для приводных клиновых ремней, имеющих широкое применение, для градации длин принят ряд R-40, в десятичном интервале которого содержится 40 чисел. Для вентиляторных клиновых рем
ней принят ряд R-80 с учетом того, что требования компактности вентиляторной передачи не позволяют иметь большие интервалы между соседними членами ряда. Для узких клиновых и вариаторных ремней принят ряд R-20*.
Минимальное и максимальное значение длины ремней каждого вида определяется следующим: минимальная величина устанавливается, исходя из минимально допустимых диаметров шкивов и межцентрового расстояния передачи и учета требований эксплуатации, а максимальная определяется особенностями передачи и возможностями производства ремней.
Ниже приведены длины клиновых ремней различных типов и сечений отечественного производства:
* Подобная унификация длин за рубежом не может быть осуществлена из-за несогласованности производства различных фирм.
Adblockdetector